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This work studies the heat transfer mechanisms during rapid heating of two-
layer composite thin slabs from a macroscopic point of view using the hyper-
bolic heat conduction model. The composite slabs consist of two thin metal
layers which may be in perfect or imperfect thermal contact. The effects of
parameters such as the two films’ thickness ratio, thermal conductivity ratio,
heat capacity ratio, thermal relaxation time, and interfacial heat transfer
coefficient on the thermal behavior of the composite slabs are investigated.
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1. INTRODUCTION

In the classical theory of diffusion, the heat flux vector (q) and the tem-
perature gradient (NT) across a material volume are assumed to occur at
the same instant of time. Fourier’s law of heat conduction,

q(x, t)=−kNT(x, t) (1)

where q is the heat flux vector, k is the thermal conductivity, and t is the
physical time, dictates such an immediate response. It results in an infinite
speed of heat propagation, implying that the thermal distribution applied
at a certain location in a solid medium can be sensed immediately anywhere
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else in the medium. Because the heat flux vector and the temperature gradient
are simultaneous, there is no difference between the cause and the effect of
heat flow. However, there are applications in which heat is found to prop-
agate at a finite speed. These applications involve very low temperatures,
near absolute zero, energy sources such as a laser or a microwave with an
extremely short duration or a very high frequency, very high temperature
gradient, and extremely short times. A specific example of one of the above
applications is the use of short-pulse lasers in the fabrication of micro-
structures, the synthesis of advanced materials, measurements of thin-film
properties, diagnostics of material structure transformation, micomachin-
ing, laser patterning, laser processing of diamond films from carbon ion-
implanted copper substrates, and laser surface hardening. To account for the
phenomena involving the finite propagation velocity of the thermal wave, the
classical Fourier heat flux should be modified. Cattaneo [1] and Vernotte [2]
suggested independently a modified heat flux model in the form

q(x, t+ỹ)=−k
“T(x, t)
“x

(2)

where ỹ is the time delay, called the ‘‘relaxation time.’’ The constitutive law
of Eq. (2) assumes that the heat flux vector (the effect) and the temperature
gradient (the cause) across a material volume occur at different instants in
time, and the time delay between the heat flux and the temperature gra-
dient is the relaxation time ỹ. The first-order expansion of q in Eq. (2) with
respect to t bridges all the physical quantities at the same time. It results in
the expansion

y
“q(x, t)
“t

+q(x, t+ỹ)=−k
“T(x, t)
“x

(3)

In Eq. (3) it is assumed that ỹ is sufficiently small so that the first-order
Taylor expansion of q(x, t+ỹ) is an accurate representation of the convec-
tion heat flux. The equation of energy conservation for such problems is
given as

rc
“T
“t
=−

“q
“x

(4)

where r is the density and c is the specific heat. Elimination of q between
Eq. (3) and Eq. (4) leads to the hyperbolic heat conduction equation,

rcỹ
“
2T
“t2
+rc

“T
“t
=k
“
2T
“x2

(5)
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The wave model represented in Eq. (5) removes the paradox of the finite
speed of heat propagation assumed in Fourier’s law. Tzou [3] relates the
relaxation time to the thermal wave speed as

ỹ=
a

C2

where a is the thermal diffusivity and C is the thermal wave speed. In the
case of C approaching infinity, the relaxation time decreases to zero (ỹ=0)
and the wave model reduces to Fourier’s law. The Cattaneo [1] and
Vernotte [2] (CV) wave model assumes an instantaneous heat flow. The
temperature gradient is always the cause for the heat transfer, while the
heat flux vector is always the effect.

It is worth mentioning here that the relaxation time ỹ is of the order of
picoseconds. Use of the hyperbolic heat conduction model is essential when
the problem time scale, which is the duration of the transient heating
process, is comparable with the thermal relaxation time ỹ.

The hyperbolic heat conduction model as given in Eq. (5) has been
receiving increasing attention both for theoretical motivations (e.g., analy-
sis of thermal waves and second sound in dieletric solids and finite speed of
heat transport) and for the analysis of some practical problems involving a
fast source of thermal energy as mentioned previously.

2. CASE STUDY

Consider a two-layer slab that consists of the first layer for 0 [ x [ a
and the second layer for a [ x [ b, which are in perfect or imperfect
thermal contact as illustrated in Fig. 1. Let k1 and k2 be the thermal

Fig. 1. Schematic diagram of the problem under
consideration.
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conductivities, and a1 and a2 be the thermal diffusivities for the first and
second layers, respectively. Knowledge of transient heat conduction in a
two-layer composite thin slab is of importance in a number of applications
such as in coating, cladding, foil formation, fabrication of p–n junctions,
and semiconductors and electronic chips. Initially, the first and second
regions are at temperature Ti. For t > 0 the boundary surface at x=0 is
kept at Tw and the boundary surface at x=b is kept insulated. The thick-
ness of the two layers is assumed to be very small relative to the height of
the slab, so it is reasonable to assume that the conducted heat is transferred
in the x-direction only.

The elementary assumption here is that the heat propagates with a
finite speed. Thus, the hyperbolic heat conduction model is suitable for
accounting for the phenomena concerning the finite propagation speed of
the thermal wave.

2.1. Perfect Contact

In this case, the energy equations coupled at the interface have to be
solved. These equations are written

r1c1
“T1(x, t)
“t

=−
“q1
“x

(6)

r2c2
“T2(x, t)
“t

=−
“q2
“x

(7)

q1+ỹq, 1
“q1
“t
=−k1

“T1
“x

(8)

q2+ỹq, 2
“q2
“t
=−k2

“T2
“x

(9)

Combine Eqs. (6) and (8), and Eqs. (7) and (9), to yield

ỹq, 1
“
2T1(x, t)
“t2

+
“T1(x, t)
“t

=a1
“
2T1(x, t)
“x2

for 0 [ x [ a (10)

ỹq, 2
“
2T2(x, t)
“t2

+
“T2(x, t)
“t

=a2
“
2T2(x, t)
“x2

for a [ x [ b (11)

which assume that K1, K2 are not functions of the coordinates or of T1, T2,
respectively, and that the following initial and boundary conditions hold:
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T1(x, 0)=T2(x, 0)=Ti

“T1(x, 0)
“t

=
“T1(x, 0)
“t

=0.0

T1(0, t)=Tw

“T2(b, t)
“x

=0

T1(a, t)=T2(a, t)

q1(a, t)=q2(a, t)

Using the following dimensionless parameters,

h=
T−Tw
Ti−Tw

, t=
x
a
, g=

a1t
a2
, y=

ỹa1

a2
, Q=

qa
k1DT

Equations (6) to (11) and their initial and boundary conditions become

“h1

“g
=−

“Q1
“t

(12)

“h2

“g
=−

1
CR

“Q2
“t

(13)

Q1+yq, 1
“Q1
“g
=−

“h1

“t
(14)

Q2+yq, 2
“Q2
“g
=−Kr

“h2

“t
(15)

yq, 1
“
2h1

“g2
+
“h1

“g
=
“
2h1

“t2
, 0 [ t [ 1.0 (16)

yq, 2
“
2h2

“g2
+
“h2

“g
=a r

“
2h2

“t2
, 1.0 [ t [ R (17)

h1(t, 0)=h2(t, 0)=1.0

“h1(t, 0)
“g

=
“h2(t, 0)
“g

=0.0
(18)
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h1(0, g)=0.0

“h2(R, g)
“t

=0.0

h(1, g1)=h2(1, g)

(19)

Q1(1, g)=Q2(1, g)

where Kr=k2/k1 is the thermal conductivity ratio, ar=a2/a1 is the
thermal diffiusivity ratio, and R=b/a. From the definition of R, it is clear
that (R−1) represents the dimensionless thickness (=(b−a)

a ) of domain 2.
Now, with the notation that L{h(t, g)}=W(t, S), Laplace transfor-

mations of Eqs. (16) and (17) yield

d2W1
dt2
−(yq, 1S2+S) W1=−(1+yq, 1S) (20)

d2W2
dt2
−1yq, 2S

2+S
ar
2W2=−1

yq, 2S+1
ar
2 (21)

These two equations assume the following solutions:

W1(t, S)=C1eM1t+C2e−M1t+
1
S

(22)

W2(t, S)=C3eM2t+C4e−M2t+
1
S

(23)

whereM1=`(yq, 1S2+S) andM2=`(yq, 2S2+S)/ar.
Also, with the notation that V=L{Q}, the Laplace transform of

Eq. (19) yields

W1(0, S)=0

“W2(R, S)
“t

=0

W1(1, S)=W2(1, S)

V1(1, S)=V2(1, S)

(24)

From Eqs. (14) and (15) with Q1(t, 0)=Q2(t, 0)=0, we have

dW1(1, S)
dt

=1Kr(1+yq, 1S)
(1+yq, 2S)

2 dW2(1, S)
dt
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Insert Eqs. (22) and (23) into (24) and solve for C1, C2, C3, and C4 to yield

C1=

1−1
S
2 ˛e−2M1 511+ Kr`a r =(1+yq, 1S)(1+yq, 2S)

2+11− Kr
`a r

=(1+yq, 1S)
(1+yq, 2S)
2 (eM2(2R−2))6

511− Kr
`a r

=(1+yq, 1S)
(1+yq, 2S)
2+11− Kr

`a r

=(1+yq, 1S)
(1+yq, 2S)
2 (eM2(2R−2))6

ˇ

˛1+e−2M1 511+
Kr
`a r

=(1+yq, 1S)
(1+yq, 2S)
2+11− Kr

`a r

=(1+yq, 1S)
(1+yq, 2S)
2 (eM2(2R−2))6

511− Kr
`a r

=(1+yq, 1S)
(1+yq, 2S)
2+11− Kr

`a r

=(1+yq, 1S)
(1+yq, 2S)
2 (eM2(2R−2))6

ˇ

C2=
−1/S

˛1+e−2M1 511+
Kr
`a r

=(1+yq, 1S)
(1+yq, 2S)
2+11− Kr

`a r

=(1+yq, 1S)
(1+yq, 2S)
2 (eM2(2R−2))6

511+ Kr
`a r

=(1+yq, 1S)
(1+yq, 2S)
2+11− Kr

`a r

=(1+yq, 1S)
(1+yq, 2S)
2 (eM2(2R−2))6

ˇ

C3=
C1eM1+C2eM1

eM2(1+eM2(2R−2))
and C4=3 C1e

M1+C2eM1

eM2(1+eM2(2R−2))
4 e2RM2

Equations (22) and (23) are inverted using a computer program based on
the Riemannsum approximation as

hk(t, g) 5
ecg

g
51
2
Wk(t, c)+Re C

N

n=1
Wk 1t, c+

inp
g
2 (−1)n6 (25)

where k=1 for domain 1 and k=2 for domain 2. In Eq. (25), Re represents
the real part of the summation and i=`−1, and cg=4.7 gives the
most satisfactory results [3]. Equation (25) yields the exact temperature
distribution numerically in both domains for the perfect contact case.

2.2. Imperfect Contact

In a manner similar to what has been done for the perfect contact
case, the energy equations coupled at the interface have to be solved with
different boundary conditions. In the case of perfect contact, the tempera-
tures at the interface are equal, while in this case the temperatures at the
interface are related as

q1(1, g)=h[T1(1, g)−T2(1, g)]
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where h is the interfacial convective heat transfer coefficient. The energy
equations in dimensionless form are given as

“h1

“g
=−

“Q1
“t

(26)

“h2

“g
=−

1
CR

“Q2
“t

(27)

Q1+yq, 1
“Q1
“g
=−

“h1

“t
(28)

Q2+yq, 2
“Q2
“g
=−Kr

“h2

“t
(29)

Combining Eqs. (26) and (28), and Eqs. (27) and (29), yields

yq, 1
“
2h1

“g2
+
“h1

“g
=
“
2h1

“t2
, 0 [ t [ 1.0 (30)

yq, 2
“
2h2

“g2
+
“h2

“g
=ar

“
2h2

“t2
, 1.0 [ t [ R (31)

Subject to the following initial and boundary conditions,

h1(t, 0)=h2(t, 0)=1

“h1(t, 0)
“g

=
“h2(t, 0)
“g

=0

(32)

h1(0, g)=0

“h2(R, g)
“t

=0

Q1(1, g)=Q2(1, g)
(33)

Q1(1, g)=Bi(h1(1, g)−h2(1, g))

where Kr=k2/k1 is the thermal conductivity ratio, ar=a2/a1 is the
thermal diffiusivity ratio, R=b/a, and Bi is the Biot number, which is
defined as ha/k1.
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Now, with the notation that L{h(t, g)}=W(t, S), the Laplace
transforms of Eqs. (30) and (31) yield

d2W1
dt2
−(yq, 1S2+S) W1=−(1+yq, 1S) (34)

d2W2
dt2
−1yq, 2S

2+S
ar
2W2=−1

yq, 2S+1
ar
2 (35)

These two equations assume the following solutions:

W1(t, S)=C1eM1t+C2e−M1t+
1
S

(36)

W2(t, S)=C3eM2t+C4e−M2t+
1
S

(37)

whereM1=`(yq, 1S2+S) andM2=`(yq, 2S2+S)/ar.
Also, with the notation that V=L{Q}, the Laplace transform of

Eq. (33) yields

W1(0, S)=0 (38a)

dW2(R, S)
“t

=0 (38b)

V1(1, S)=V2(1, S)

From Eqs. (28) and (29) with Q1(t, 0)=Q2(t, 0)=0 and V1(1, S)=
V2(1, S), we obtain

dW1(1, S)
dt

=1Kr(1+yq, 1S)
(1+yq, 2S)

2 dW2(1, S)
dt

(38c)

Also, the interfacial boundary condition becomes

dW1(1, S)
dt

=−Bi(1+yq, 1S)[W1(1, S)−W2(1, S)] (38d)

Insert Eqs. (36) and (37) into Eqs. (38a) to (38d) and solve for C1, C2, C3,
and C4 to yield
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C1=

1 − 1
S
2 ˛e−2M1 5b(1+eM2(2R−2))+Kr(M1−b)

`a r

=(1+yq, 1S)
(1+yq, 2S)

(eM2(2R−2)−1)6

5Kr(M1−b)

`a r

=(1+yq, 1S)
(1+yq, 2S)

(eM2(2R−2)−1)+b(1+eM2(2R−2))6
ˇ

˛1+e−2M1 5b(1+eM2(2R−2))+
Kr(M1−b)

`a r

=(1+yq, 1S)
(1+yq, 2S)

(eM2(2R−2)−1)6

5Kr(M1−b)

`a r

=(1+yq, 1S)
(1+yq, 2S)

(eM2(2R−2)−1)+b(1+eM2(2R−2))6
ˇ

C2=
−
1
S

˛1+e−2M1 5b(1+eM2(2R−2))+
Kr(M1−b)

`a r

=(1+yq, 1S)
(1+yq, 2S)

(eM2(2R−2)−1)6

5Kr(M1−b)

`a r

=(1+yq, 1S)
(1+yq, 2S)

(eM2(2R−2)−1)+b(1+eM2(2R−2))6
ˇ

C3=
C1(M1+b) e−M1−C2(M1−b) e−M1

be−M1(1+eM2(2R−2))

C4=3C1(M1+b) e−M1−C2(M1−b) e−M1

be−M1(1+eM2(2R−2))
4 e2RM2

Equations (36) and (37) are inverted using a computer program based on
the Riemannsum approximation as

hk(t, g) 5
ecg

g
51
2
Wk(t, c)+Re C

N

n=1
Wk 1t, c+

inp
g
2 (−1)n6 (39)

where k=1 for domain (1) and k=2 for domain (2). In Eq. (39), Re repre-
sents the real part of the summation and i=`−1, and cg=4.7 gives the
most satisfactory results [3]. Equation (39) yields the exact temperature
distribution in both domains for imperfect contact case.

3. RESULTS AND DISCUSSION

Figures 2 to 4 show the effect of the interfacial Biot number on the
spatial temperature distribution within the two domains. It is clear from
Figs. 2 and 3 that the temperature distribution for the imperfect contact
case approaches that for the perfect contact case as Bi increases. Also, the
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Fig. 2. Spatial temperature distribution within the two
domains for perfect and imperfect contact using the hyper-
bolic heat conduction model.

Fig. 3. Spatial temperature distribution within the two
domains for perfect and imperfect contact using the parabolic
heat conduction model.
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Fig. 4. Spatial temperature distribution within the two
domains for perfect and imperfect contact using the para-
bolic heat conduction model.

interfacial temperature jump decreases as the Bi number increases. Using
the thermal perfect contact assumption, the temperature is overestimated in
the first domain, which is adjacent to the heat transfer boundary, i.e., the
boundary at which the cooling effect is applied. On the other hand, the
perfect thermal contact assumption underestimates the temperature within
the second domain adjacent to the insulated boundary. The appearance of
the discontinuity in the temperature profile in Fig. 2 at t=0.5 and t=1.7
is due to the wave nature of the hyperbolic heat conduction model. As
mentioned previously, the hyperbolic heat conduction model assumes that
heat propagates at a finite speed in the form of a wave. The appearance of
these discontinuities depends on the specific location within the slab, on
time, and other thermal properties of the two layers especially on the
thermal relaxation times yq1 and yq2. For large thermal relaxation times
yq1 and yq2 the appearance of these discontinuities is very likely. This is the
reason why, for example, these discontinuities do not appear in Fig. 6
which assumes very small values of yq1 and yq2.

Figure 4 shows that an interfacial Biot number larger than 50 yields
predictions similar to that of the perfect contact model. Figure 5 shows
deviations between the predictions of both perfect and imperfect contact
models at different interfacial Biot numbers. In this Fig. 5 D is defined as
the difference between the dimensionless temperatures obtained under the
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Fig. 5. Effect of Biot number on the temperature distribu-
tion difference within the two domains for perfect and
imperfect contact using the parabolic heat conduction model.

assumption of perfect contact and imperfect contact. It is clear that the
deviation decreases as Bi increases. The deviation in the domain adjacent to
the cooling boundary is larger than that in the domain adjacent to the
insulated boundary. Also, the deviation has its maximum value at the
contact plane. As a result, it is concluded that the deviation between both
the perfect and the imperfect contact models is significant very near the
contact plane and in locations having high heat transfer rates. Figure 6
shows the spatial temperature distribution using the perfect contact model
at different thermal relaxation time yq. It is clear from this figure that for
yq less than 0.01, the thermal relaxation time has insignificant effect
on the prediction of the diffusion parabolic model, which assumes that
yq1=yq2=0.

Figure 7 shows the effect of the interfacial Biot number on the tran-
sient temperature variation within the two domains. It is clear from this
figure that the transient temperature variation for the imperfect contact
case approaches that for the perfect contact case as Bi increases. Also, this
figure shows that an interfacial Biot number larger than 50 yields predic-
tions similar to that of the perfect contact model. Figure 8 shows the effect
of the second domain thickness (R−1) on the predictions of the perfect
and imperfect contact models within the first domain. It is clear that the
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Fig. 6. Spatial temperature distribution within the two
domains using the parabolic and the hyperbolic heat conduc-
tion models.

Fig. 7. Transient temperature variation within the two
domains for perfect and imperfect contact using the hyper-
bolic heat conduction model.
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Fig. 8. Spatial temperature distribution within the two
domains for perfect and imperfect contact using the hyper-
bolic heat conduction model at different R.

deviation between both models decreases as the second domain thickness
decreases. As the thickness of the second domain decreases, its thermal
capacity and thermal resistance decrease and, as a result, the first domain is
not affected by the presence of the second domain or by the type of the
interfacial thermal conditions at the interface between both domains. For
situations involving very thin second domain, the perfect thermal contact
assumption is justified.

Figure 9 shows the effect of the thermal conductivity ratio Kr on the
predictions of both models within the two domains. It is clear that as Kr
increases, the deviation between the predictions of both models decreases in
the second domain, which has the higher conductivity, and increases in the
first domain, which has the lower conductivity. Domains having a high
thermal conductivity are less sensitive to the type of the interfacial thermal
conditions. Also, it is clear that the temperature distribution in the domain,
which has a higher conductivity, may be assumed spatially lumped. Figure 10
shows the effect of the thermal diffusivity ratio ar on the deviation between
the predictions of both models within the two domains. It is clear that as ar
increases the deviation increases in the second domain and decreases in the
first domain. An increase in ar with a fixed value of Kr implies that the
thermal capacity ratio {r1c1/(r2c2) increases. The thermal capacity ratio
r1c1/(r2c2) increases by increasing r1c1 or decreasing r2c2. As the thermal
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Fig. 9. Spatial temperature distribution within the two
domains for perfect and imperfect contact using the hyper-
bolic heat conduction model at different Kr.

Fig. 10. Spatial temperature distribution within the two
domains for perfect and imperfect contact using the hyper-
bolic heat conduction model at different ar.
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capacity of the first domain increases, then the type of interfacial thermal
boundary condition does not cause a significant change in the temperature
distribution of the first domain. On the other hand, as r2c2 decreases, then
the type of the interfacial thermal boundary condition causes a significant
change in the temperature distribution of the second domain. The temper-
ature distribution within low-thermal capacity domains is very sensitive to
any change in the interfacial thermal boundary conditions.

4. CONCLUSIONS

The thermal behavior of a two-layer composite slab under the effect of
the hyperbolic heat conduction model is investigated. The layers in the
composite slab are in imperfect thermal contact. It is found that the perfect
contact model may replace the imperfect contact model for an interfacial
Biot number larger than 50. The layer adjacent to the heat transfer
boundary is more sensitive to the interfacial thermal boundary condition.
Also, it is found that the deviation between the predictions of the perfect
and the imperfect contact models is more significant in the domain adja-
cent to the heat transfer boundary and the deviation has its maximum
value at the contact plane. The classical heat diffusion model can replace
the hyperbolic model when the dimensionless thermal relaxation time of
both domains is less than 0.01. The second domain has insignificant effect
on the thermal behavior of the first domain when the dimensionless thickness
of the second domain is less than 0.1. Also, it is found that the deviation
between the perfect and the imperfect contact models is more significant in
the domain that has the lower thermal conductivity and the higher thermal
diffusivity.

NOMENCLATURE

a Width of domain 1, m
Bi Biot number, ha/k1
c Specific heat capacity, J · kg−1 · K−1

f Specified surface temperature,K
h Interfacial heat transfer coefficient, W · m−2 · K−1

k Thermal conductivity, W · m−1 · K−1

Kr Thermal conductivity ratio, k2/k1
R Dimensionless thickness of domain (1 and 2), b/a
t Time, s
T1 Temperature of domain 1, K
T2 Temperature of domain 2, K
Tı Initial temperature of domain (1 and 2), K
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T. Ambient temperature,K
Tw Wall temperature,K
W Laplace transform of the dimensionless temperature
x x-coordinate
y y-coordinate

Greek Symbols

ar Thermal diffusivity ratio, a2/a1
D Dimensionless temperature difference between perfect

and imperfect thermal contact
g Dimensionless time, a1t/a2

h Dimensionless temperature defined in different forms
t Dimensionless x-coordinate, xa
r Density, kg · m−3

ỹ Thermal relaxation time, s
y Dimensionless thermal relaxation time, ỹa1

a2

Subscripts

1 Refers to domain 1
2 Refers to domain 2

REFERENCES

1. C. Catteneo, Comptes Rendus 247:431 (1958).
2. D. Y. Tzou, Macro- to Microscale Heat Transfer—The Lagging Behavior (Taylor and

Francis, Washington, DC, 1997), pp. 1–64.
3. P. Vernotte, Comptes Rendus 252:2190 (1961).

598 Khadrawi, Al-Nimr, and Hammad

File: KAPP/840-ijot/23-2 367684 - Page : 18/18 - Op: GC - Time: 10:04 - Date: 10:04:2002


	1. INTRODUCTION
	2. CASE STUDY
	3. RESULTS AND DISCUSSION
	4. CONCLUSIONS
	NOMENCLATURE

